日本激情视频在线播放_中文字幕视频二区_精品粉嫩超白一线天av_亚洲免费成人网_97高清免费视频_国产成人av电影在线观看_久草在线视频福利_色综合久久久无码中文字幕波多_亚洲人成网站999久久久综合_国产经典三级在线

世聯博研(北京)科技有限公司 主營:Flexcell細胞力學和regenhu細胞3D生物打印機銷售技術服務: 美國Flexcell品牌FX-5000T細胞牽張應力加載培養系統,FX-5K細胞顯微牽張應力加載培養系統,Tissue Train三維細胞組織培養與測試系統,FX-5000C三維細胞組織壓應力加載培養系統,STR-4000細胞流體剪切應力加載培養系統,德國cellastix品牌Optical Stretcher高通量單細胞牽引應變與分析系統 Regenhu品牌3D discovery細胞友好型3D生物打印機,piuma細胞納米壓痕測試分析、aresis多點力學測試光鑷,MagneTherm細胞腫瘤電磁熱療測試分析系統
服務電話: 010-67529703
主營產品: Flexcell細胞力學和regenhu細胞3D生物打印機銷售技術服務: 美國Flexcell品牌FX-5000T細胞牽張應力加載培養系統,FX-5K細胞顯微牽張應力加載培養系統,Tissue Train三維細胞組織培養與測試系統,FX-5000C三維細胞組織壓應力加載培養系統,STR-4000細胞流體剪切應力加載培養系統,德國cellastix品牌Optical Stretcher高通量單細胞牽引應變與分析系統 Regenhu品牌3D discovery細胞友好型3D生物打印機,piuma細胞納米壓痕測試分析、aresis多點力學測試光鑷,MagneTherm細胞腫瘤電磁熱療測試分析系統
聯系我們
產品中心

picotweezers超分辨率激光雙光鑷系統

  • 如果您對該產品感興趣的話,可以
  • 產品名稱:picotweezers超分辨率激光雙光鑷系統
  • 產品型號:picotweezers
  • 產品展商:picotweezers/PicoFocus
  • 產品文檔:無相關文檔
簡單介紹

picotweezers全息光鑷,PicoFocus三維力學測試光鑷(3D Force Sensitive Optical Tweezers),單細胞單分子力學光鑷系統,全息力敏雙光鑷,分子之間作用力定量3D測量光鑷系統,三維單個細胞定量3D機械力測量光鑷,三維單個細胞/分子操作分析光鑷系統,三維光鑷系統,全息力敏雙光鑷,細胞分子全息三維力敏雙光鑷,3D超分辨率激光雙光鑷系統,三維力敏光鑷

產品描述

德國picotweezers品牌,高分辨率三維單細胞單分子力學捕獲分析光鑷系統(3D Force Sensitive Optical Tweezers)

 

PicoTweezers是一種結合了光鑷技術及微視圖像計算集合的分子生物力學分析系統。PicoTweezers作為一個獨立的系統,可以與蔡司Axiovert、AxioA1或D1顯微鏡聯合使用。PicoTweezers配備了功率為1W或5W的紅外光纖激光器,可達激光陷阱捕獲力范圍是400pN——2nN。PicoTweezers的3D-壓電平臺可以實現x軸和y軸為200μn;m的分辨率,在z軸方向可以實現20μn;m的分辨率。獨特的視頻分析系統(Video-analysis)可以達到至少2.5納米的橫向和軸向分辨率,其圖像拍攝速率為200幀/秒,X、Y、Z互相成像速度為400赫茲,可對生物大分子進行0.1PN作用力分辨率的實時分析。 

圖1 PicoTweezers裝配示意圖
系統工作原理:
分子之間的作用力是在三維方向上分布的,所以為了計算大分子之間產生的各種作用力,需要在X、Y、Z三個維度上進行作用力的**檢測,并且要求在這三個維度的測量空間比較大,以實現實驗的自由度和多目的性。 
PicoTweezers系統使用視頻分析系統(右下圖)作為粒子追蹤、檢測和力測量的系統,該系統雖然相對復雜,但模塊化的配置和穩定的組裝賦予了該系統易于使用的特征。 
在測量的過程中,被光阱捕獲的顆粒會在三個方向上對光進行阻擋,導致光線偏轉,PicoTweezers的視頻分析系統通過獲取偏轉的圖像來分析作用力的變化,進而可以分析分子之間作用力的變化。由于該系統非常穩定,且不需要校準、沒有試驗和空間的限制,所以該系統應用領域非常廣泛,是生物學、分子生物學、材料學研究者在大分子生物力學研究中的***實驗儀器之一。 
系統擁有自動、簡單和可靠的力校準系統
該系統在三維空間中的力校準是通過斯托克斯阻力法移動3D-壓電平臺周邊的介質來進行的。在具體的應用中,作用力的檢測是通過基于視頻的Allan方差分析和校準途徑來實現的,其過程主要是通過對微小粒子的波動進行圖像記錄和分析,在此過程中,不需要施加任何摩擦力。在實驗過程中,斯托克斯方法和Allan方差都不需要對光阱剛度k進行判定,即使需要,視頻分析軟件可以自動進行計算。 
系統的計算原理
系統擁有兩臺高速數碼照相機。**臺照相機對光學阱捕獲的粒子的周圍區域進行成像,**臺高速CMOS照相機對被放大的粒子大圖像進行測量。相關的關鍵會實時分辨并鎖定每個幀圖像的邊緣部分,確定出圖像的灰階和合適的范圍,以此來確定或獲取粒子的直徑。 
當外在的作用力施加在粒子上面時導致粒子在Z-軸上發生位移時,粒子的直徑會發生變化,軟件會將這種變化通過Z-軸的作用力表現出來。而粒子受到水平方向上的作用力時,僅僅改變圖像的圓心的位置,但是其直徑并不會改變。這樣通過獲取圖像的位置的變化就可以分析粒子納米級別的水平方向受到的作用力,進而分析出粒子在X、Y軸上所受到的作用力。 

粒子在Z-軸上作用力會改變圖像的直徑,在X、Y軸上所受到的作用力會改變圖像的圓心位置
力測量的三種方式對比:
左邊:是傳統光鑷的監測方法。激光通過捕獲粒子,然后收集前向散射光并投射到探測器感應粒子的偏轉。由于獲取圖像之前需要設置冷卻器以進行**地調節,這種設置獲取的圖像容易漂移和錯位,導致誤差; 
中間:從顆粒被捕獲的目標收集背散射光,入射激光設置分光器并投射到檢測器。這種方式測量的量程大,同樣可以建立基于視頻的檢測方法,但**度不夠。 
右邊:這是PicoTweezer的檢測方法,同樣也是通過設置并收集背散射光,然后通過分光器并投射到檢測器。但是PicoTweezer系統采用了高靈敏度的CMOS圖像傳感器進行處理,并添加一組聚焦透鏡進行圖像聚焦,從而可以實現對納米粒子圖像的更**測定。其建立的基于圖像的檢測方法允許粒子更高的多樣性,數據吞吐速度更快,分析效果更**。采用這種方法的優勢之一是激光器和光阱之間的光學路徑無需對檢測器進行校準或調整,對于被監測的對象粒子的直徑和移動可以被長期地監測而不會發生漂移。 

圖 光鑷子測量分子力的三種方式對比 

圖PicoTweezers軟件工作界面
儀器亮點
1)定量在三維方向實現0.1 PN分辨率下的3D測量 
2)*大光阱捕獲力可在1 W光纖激光器下達到400 PN
3)通過光鑷實現對捕獲對象精度為納米級別的操控 
4)擁有緊湊、超穩定模塊化系統 
5)可編程的LabVIEW?軟件界面
6)不需要檢測校準,軟件計算非常容易 
儀器應用范圍
1.)單分子與活細胞的操控和分析 
2)高分子彈性分析、微流控分析 
3)分子相互作用、納米孔分析 
應用案例
1)單分子的捕獲及分析
單個DNA鏈通過兩端的官能基團固定在兩個微珠之間。其中的一個微珠被玻璃微吸管固定,另外一個微珠被光鑷俘獲,通過移動壓電平臺增加珠之間的距離引起的受控DNA的機械張力。作為響應的分子的力 - 延伸曲線表現出DNA特定的機械性能,結果可以計算DNA的熵彈性,DNA的一個過渡延伸平臺區和熔融過渡區域。 


圖DNA分子的捕獲及分析圖譜
2)單個DNA鏈的易位過程分析
PicoTweezers可用于納米孔分子生物學的研究,他們迅速演變成單分子檢測領域一個非常新穎的技術。當單個DNA分子或DNA-蛋白復合物通過納米孔時,這個過程可以被PicoTweezers監測并分析,相關數據可以確定DNA的易位動力學和DNA上結合的蛋白質的位置。 
納米孔測量的優勢主要表現在:(1)可在非常低的濃度和很小的樣品體積下測定目標分子;(2)可同時進行基因與生物標志物的篩選;(3)由于不需要進行放大及轉化,分析測量的速度將很快且費用低廉。 
當捕獲的的粒子上的DNA接近納米孔(至5微米的距離)時,帶負電荷的DNA通過DNA骨架的靜電力立即進入納米孔中,這種效果可以通過監測的力信號得到。可以看到這種作用力在到達一定穩定值后突然變化,顯示出DNA的易位過程。系統所測得的力取決于施加的電壓以及納米孔的直徑。當整個DNA鏈與納米孔另外一端的距離為10.5微米時,表明DNA鏈被拉出孔,所述力降回到零。 
目前PicoTweezers可結合各個實驗室已構建的納米尺度裝置對單分子進行分析。包括生物納米孔(通道) (由各類蛋白質分子鑲崁在磷脂膜上組成)、固態納米孔(通道)(包括各種硅基材料、SiNx、碳納米管、石墨烯、玻璃納米管等)及兩類相結合的雜化納米孔(通道)。 

 
圖 DNA的易位過程分析圖譜
3)單個DNA結合蛋白分析
當結合到DNA鏈上的單個過氧氧化還原酶通過納米孔過程中,會發生非對稱的力的信號。這種信號可以作為蛋白質在DNA上的結合位點的無標記的定位信息。相關的力學信息結合DNA和蛋白質的特征,可以進一步得出其蛋白質與DNA的結合作用力來源于蛋白質與DNA骨架電荷的作用力。當單個DNA結合蛋白通過納米孔時,DNA與結合蛋白之間的靜電引力減少,有助于分子通過微孔。 

圖單個DNA結合蛋白分析圖譜
參考文獻

  • S. Knust, A. Spiering, H. Vieker, A. Beyer, A. G?lzh?user, K. T?nsing, A. Sischka and D. Anselmetti Video-Based and Interference-Free Axial Force Detection and Analysis for Optical Tweezers Review of Scientific Instruments, 83, 103704 (2012)

  • Spiering, S. Getfert, A. Sischka, P. Reimann and D. Anselmetti Nanopore Translocation Dynamics of a Single DNA-Bound Protein Nano Letters, 11, 2978 (2011)

  • Sischka, A. Spiering, M. Khaksar, M. Laxa, J. K?nig, K.J. Dietz and D. Anselmetti Dynamic Translocation of Ligand-Complexed DNA Through Solid-State Nanopores with Optical Tweezers Journal of Physics - Condensed Matter, 22, 454121 (2010)

  • Kleimann, A. Sischka, A. Spiering, K. T?nsing, N. Sewald, U. Diedrichsen and D. Anselmetti Binding Kinetics of Bisintercalator Triostin A with Optical Tweezers Force Mechanics Biophysical Journal, 97, 2780 (2009)

  • Pla, A. Sischka, F. Albericio, M. Alvarez, X. Fernandez-Busquets and D. Anselmetti Optical-Tweezers Study of Topoisomerase Inhibition Small, 5, 1269 (2009)

  • Sischka, C. Kleimann, W. Hachmann, M.M. Sch?fer, I. Seuffert, K. T?nsing and D. Anselmetti Single Beam Optical Tweezers Setup with Backscattered Light Detection for Three-Dimensional Measurements on DNA and Nanopores Review of Scientific Instruments, 79, 063702 (2008)

  • Anselmetti, N. Hansmeier, J. Kalinowski, J. Martini, T. Merkle, R. Palmisano, R. Ros, K. Schmied, A. Sischka and K. T?nsing Analysis of Subcellular Surface Structure, Function and Dynamics Analytical and Bioanalytical Chemistry, 387, 83 (2007)

  • Sischka, K. T?nsing, R. Eckel, S.D. Wilking, N. Sewald, R. Ros and D. Anselmetti Molecular Mechanisms and Kinetics between DNA and DNA Binding Ligands Biophysical Journal, 88, 404 (2005)


 

英文介紹Introduction

Our Optical Tweezers System Provides:

  • Quantitative 3D Force Measurements with 0.1 pN Resolution

  • Achievable Trapping Force of 400 pN with 1 W Fiber Laser

  • Manipulation of Trapped Objects with Nanometer Precision

  • Compact and Ultrastable Modular System

  • Programmable LabView? Software Interface

  • Easy-to-use Force Calibration without Detector Alignment

  • Scope of Applications:

    • from Single Molecules to Living Cells

    • from Polymer Elasticity to Microfluidics

    • from Molecular Interactions to Nanopores


     

Optical Trapping and Force Measurement

Optical tweezers are used to trap and actively manipulate microscopic objects. They also offer a vast area of applications by measuring forces applied to trapped objects.

The Optical Trap

Microscopic objects - like individual nano- or microparticles, cells, cell compartments, single or clustered molecules - can be trapped securely inside the center of a strongly focused laser beam.

When an external forces is acting on the trapped object, it deflects from the center of the trap as the deflection x depends linearly on trap stiffness k and force F.

Lateral and axial forces acting on a trapped particle.
Lateral and axial forces acting on a trapped particle

Forces

A trapped particle experiences various external forces. Atoms or molecules of the surrounding medium induce Brownian motion in all three dimensions, depending on temperature, viscosity and the presence of obstacles in the vicinity. Macroscopic fluid movements cause a drag force. Electric fields and bulk or surface charges may generate electrophoretic or electroosmotic forces.

Particularly, single molecules can induce forces of broad variety and magnitude while bound to the trapped object. On the other hand, the application of a force generated by an optical trap to a single molecule will gain vast insight into the molecular structure and elasticity, binding properties and kinetics.

Deflection is the Essence

Generating and metering various forces requires a reliable force measurement capability in all three dimensions to allow for a maximum degree of experimental freedom and versatility. Therefore, force detection is accomplished by precisely measuring the deflection of the trapped particle in each direction.

The PicoTweezers system utilizes a sophisticated and easy-to-use video analysis (right image below) for particle tracking, detection and force measurements. It offers the largest field of application since it clears common calibration difficulties, system instabilities, as well as experimental and spatial restrictions.

The evolution of force measurement. Left: Laser light passing trough the trapped particle (forward scattered light) is collected and projected onto a detector sensing the particle’s deflection. The condenser in close proximity to the trapping objective needs to be precisely adjusted. It is susceptible against drift and misalignment and limits the experimental space. Center: Backscattered light from the particle is collected by the trapping objective, separated from the incident laser light and projected onto the detector. This extremely robust setup allows high experimental freedom – the same applies for video-based detection method in the right image, where no detector alignment is required, too. In addition, a high diversity of trapped particles can be video-analyzed and measured.

Video Detection and Analysis

Video-based force detection is easy to calibrate and provides an alignment-free and unsusceptible method for all force measurements in three dimensions. It is embedded into the LabView? platform.

The Principle

Video frame of a trapped microbead with various overlaid detection lines

In addition to a video camera imaging the surrounding area of the optical trap, a second high-speed CMOS camera simultaneously surveys the magnified image of the trapped particle. The software searches for specific edges (as shown in the upper right quadrant of the image) in each frame and in real-time, determines gradients (lower right quadrant) and fits a circle (lower left quadrant) which correlates to the apparent particle diameter.

If an external axial force is acting on the particle, its apparent diameter changes, which the software translates into a z-force. Lateral forces only shift the center of the particle. These lateral deflections in the order of nanometers are then translated into x- and y-forces.

Easy and Reliable Force Calibration

LabView? based trapping, calibration and measurement software

Force calibration in three dimensions is conducted by moving the surrounding medium via the piezo stage using Stokes’ drag force law.

For specific applications, video-based force detection utilizes Allan Variance analysis and calibration. Here, smallest particle fluctuations are recorded and analyzed without the need of applying any frictional force. Both Stokes’ method and Allan Variance do not require the determination of the trap stiffness k, though the video-analysis software can calculate it if desired.

Benefits of Video-Based Force Detection

There is no need of detector alignment or adjustment in the beginning or during experimentation because the CMOS camera providing data for video detection and analysis is integrated into the optical pathway between laser and optical trap. Video detection is unsusceptible to disturbing particles that occasionally may be trapped together with the measured object. Since the diameter of the trapped object is permanently monitored, further particles of interest can be trapped and compared with previous ones. Specifically tailored Allan Variance for video analysis is a powerful calibration tool for experiments that take place in an environment that prevents other calibration or analysis methods. When trapping particles close to interfaces (bottom or ceiling of sample chamber, artificial or biological membranes, etc.), video analysis delivers an interference-free force signal.

Detection Tandem

Optionally, PicoTweezers can be equipped with additional backscattered light detection capability for simultaneous measurements or as stand-alone method, if experiments need to be conducted in absence of light or if particle fluctuations must be analyzed with highest sample rate in the kHz range.

Applications — Single Molecules and Polymer Elasticity

The elastic behavior of a single DNA-strand in absence or in presence of binding ligands can be reliably measured. Theoretical polymer models that are fitted to the results will deliver parameters, which characterize the polymer elasticity.

Grabbing a Single Molecule

A single DNA is immobilized between two microbeads.

To bind a single DNA-strand between two coated microbeads, it has to be properly functionalized on both ends. Thus, it can be immobilized between two beads, of which one is optically trapped and the other is held on the tip of a micropipette. Increasing the distance between the beads by moving the piezo stage induces a controlled mechanical tension to the DNA.

As a response, the force-extension curve of the molecule exhibit characteristic mechanical properties, such as an entropic elasticity, an overstretching plateau and a melting transition region.

Left: Force response of a single 48502 base pair long DNA molecule of bacteriophage lambda. In the force range up to 10 pN the entropic regime determines the elastic behavior of the molecule, whereas around 65 pN the characteristic overstretching transition occurs. The nature of this phenomena remains controversial, as well as for a less pronounced transition at 160 pN. Right: Fitting the Worm-like-chain model to the entropic regime yields two intrinsic elasticity parameters. For example, the persistence length strongly depends on salt concentration and on the presence of DNA-binding ligands.

DNA as Sensor for Foreign Molecules

The DNA strand can serve as a host for a variety of different molecules, such as small intercalators, groove-binders, proteins, enzymes or molecular motors.

The binding event of a single or a multitude of ligands can change the elastic response more or less significantly. As an example, the force curve of a DNA is shown in presence of the antibiotic distamycin-A that attaches to the minor groove of the DNA strand while stabilizing it and helping to resist the overstretching. On the other hand, diazoniapentaphene as an intercalator increases both contour and persistence length and renders the overstretching plateau to disappear.

Small or large variations in the elastic response of a DNA-molecule in the presence of binding ligands can be measured.

Applications — Translocation through Nanopores

Nanopores play a major role in biology and they rapidly evolved into a new and promising technique in single-molecule detection. The controlled threading of a single DNA molecule or a DNA-protein complex into a nanopore allows investigation of the translocation dynamics and a localization of the bound protein.

Left: TEM image of a solid-state nanopore drilled with a focused ion beam machine into a Si3N4membrane that serves as model system to study single molecule translocations. Right: Experimental setup of a DNA translocation measured with optical tweezers. When applying a voltage across the membrane, a single DNA molecule immobilized on a trapped microbead translocates through the pore. The electrostatic force acting on the molecule and the distance between bead and nanopore can be precisely measured.

Translocating a Single DNA Strand

When the DNA on the trapped bead approaches the nanopore (to a distance of 5 μm) it is immediately threaded into the pore by electrostatic forces acting on the negatively charged DNA backbone. This effect can be monitored as an abrupt step of the force signal to a certain value, which remains constant even when retracting the bead. The measured force depends on the applied voltage, as well as on the diameter of the nanopore.

When the entire DNA strand with an end-end-distance of 10.5 μm is pulled out of the pore, the force drops back to zero.

Controlled DNA threading into a 55 nm solid-state nanopore with an applied voltage of 50 mV.

Single DNA-Bound Protein

A distinct asymmetric force signal occurs when a single peroxiredoxin molecule bound to the DNA stand is actively pulled through the pore. This effect serves as a label-free localization of the protein binding site.

It can be understand as the result of an effective positive charge of the protein counteracting the negative DNA backbone charge and reducing the electrostatic force.

Characteristic force signal of a single peroxiredoxin molecule bound to a DNA strand when both are translocated through a 35 nm nanopore.

We Design and Build Your Optical Tweezers.

PicoTweezers is a stand-alone system, that can also be customized to your Zeiss Axiovert, Axio Observer A1 or D1. It will be equipped with a 1 W or 5 W IR fiber laser for highest spatial trap stability yielding a trapping force of at least 400 pN or 2 nN, respectively.

The 3D-piezo stage enables nanometer resolution in a range of 200 μm in x and y, as well as 20 μm in z-direction. Video-analysis can achieve a lateral and axial resolution of at least 2.5 nm, which results in a force resolution of 0.1 pN with a frame rate of 200 and 400 Hz in z- and x,y-direction, respectively

References

  • S. Knust, A. Spiering, H. Vieker, A. Beyer, A. G?lzh?user, K. T?nsing, A. Sischka and D. Anselmetti
    Video-Based and Interference-Free Axial Force Detection and Analysis for Optical Tweezers
    Review of Scientific Instruments, 83, 103704 (2012)

  • A. Spiering, S. Getfert, A. Sischka, P. Reimann and D. Anselmetti
    Nanopore Translocation Dynamics of a Single DNA-Bound Protein
    Nano Letters, 11, 2978 (2011)

  • A. Sischka, A. Spiering, M. Khaksar, M. Laxa, J. K?nig, K.J. Dietz and D. Anselmetti
    Dynamic Translocation of Ligand-Complexed DNA Through Solid-State Nanopores with Optical Tweezers
    Journal of Physics - Condensed Matter, 22, 454121 (2010)

  • C. Kleimann, A. Sischka, A. Spiering, K. T?nsing, N. Sewald, U. Diedrichsen and D. Anselmetti
    Binding Kinetics of Bisintercalator Triostin A with Optical Tweezers Force Mechanics
    Biophysical Journal, 97, 2780 (2009)

  • D. Pla, A. Sischka, F. Albericio, M. Alvarez, X. Fernandez-Busquets and D. Anselmetti
    Optical-Tweezers Study of Topoisomerase Inhibition
    Small, 5, 1269 (2009)

  • A. Sischka, C. Kleimann, W. Hachmann, M.M. Sch?fer, I. Seuffert, K. T?nsing and D. Anselmetti
    Single Beam Optical Tweezers Setup with Backscattered Light Detection for Three-Dimensional Measurements on DNA and Nanopores
    Review of Scientific Instruments, 79, 063702 (2008)

  • D. Anselmetti, N. Hansmeier, J. Kalinowski, J. Martini, T. Merkle, R. Palmisano, R. Ros, K. Schmied, A. Sischka and K. T?nsing
    Analysis of Subcellular Surface Structure, Function and Dynamics
    Analytical and Bioanalytical Chemistry, 387, 83 (2007)

  • A. Sischka, K. T?nsing, R. Eckel, S.D. Wilking, N. Sewald, R. Ros and D. Anselmetti
    Molecular Mechanisms and Kinetics between DNA and DNA Binding Ligands
    Biophysical Journal, 88, 404 (2005)

產品留言
標題
聯系人
聯系電話
內容
驗證碼
點擊換一張
注:1.可以使用快捷鍵Alt+S或Ctrl+Enter發送信息!
2.如有必要,請您留下您的詳細聯系方式!
Copyright@ 2003-2025  世聯博研(北京)科技有限公司版權所有      電話:13466675923 傳真: 地址:北京市海淀區西三旗上奧世紀中心A座9層906 郵編:100096

国产高清不卡| 动漫一区二区在线| 久久免费一区| 大西瓜av在线| 中文字幕亚洲精品一区| 粉嫩一区二区三区国产精品| av高清一区| 噜噜爱69成人精品| 天天色图综合网| 日韩在线观看精品| 一区二区三区一级片| 国产一二三四区在线| 综合毛片免费视频| 国产老女人精品毛片久久| 亚洲欧美在线免费观看| 日韩欧美视频网站| 亚洲国产精品二区| 国产精品中文字幕亚洲欧美| 亚洲超碰精品一区二区| 7777精品久久久大香线蕉小说| 中文字幕在线观看免费高清| 午夜伦理福利在线| 久草中文综合在线| 国产亚洲日本欧美韩国| 伊人成色综合网| 九九热最新视频| 91综合久久爱com| 亚洲人成伊人成综合网小说| 国产91色在线播放| aa片在线观看视频在线播放| 国产美女av在线| 日韩成人精品在线观看| 国产亚洲精品美女| 丰满少妇在线观看| 欧美挠脚心网站| 日韩成人av影视| 久久精品99久久久香蕉| 国内外成人免费在线视频| 亚洲成人观看| 蜜桃久久av一区| 久久中文字幕在线视频| 中文字幕在线播放视频| 九色porny自拍视频在线播放| 国产成人综合在线| 日本一区二区不卡| 全网免费在线播放视频入口 | 97电影在线观看| 国产91对白在线观看九色| 欧美交受高潮1| 亚洲精品成人av久久| 96视频在线观看欧美| 亚洲成人1区2区| 日韩欧美在线一区二区| 丰满少妇一级片| 久久午夜精品| 日韩av高清不卡| 日韩大片免费在线观看| 久久精品高清| 日韩专区在线播放| 奇米网一区二区| 色愁久久久久久| 亚洲第一区中文99精品| 久久性爱视频网站| 欧美精选视频一区二区| 亚洲午夜私人影院| 亚洲精品中文字幕乱码三区不卡 | 青娱乐国产在线视频| 精品视频网站| 国产亚洲美女久久| 国产在线免费av| 亚洲人成网www| 日韩久久免费电影| 日韩中文字幕有码| 秋霞影院一区二区三区| 精品久久国产老人久久综合| 91精品人妻一区二区三区蜜桃2 | 国产丝袜在线播放| 天天做天天摸天天爽国产一区| 五月天综合婷婷| 69av亚洲| 色综合久久久久| 娇妻高潮浓精白浆xxⅹ| 欧美亚洲国产日韩| 久久av在线看| 高潮毛片又色又爽免费| 蜜臀av一区二区三区| 91精品黄色| 毛片在线播放网站| 岛国av一区二区三区| 日韩精品视频一二三| 日韩黄色网络| 久久久免费高清电视剧观看| 99re热视频| 国产在线精品国自产拍免费| 国产美女精品久久久| 最新中文在线视频| 综合久久久久综合| 奇米影音第四色| 99re8这里有精品热视频8在线 | 欧美中文一区二区三区| 亚洲一级中文字幕| 激情成人综合| 婷婷成人综合| 一本色道婷婷久久欧美 | www成人免费| 亚洲18在线| 欧美日韩爱爱视频| 午夜成人免费影院| 天天色天天爱天天射综合| 中国美女乱淫免费看视频| 99精品视频免费观看| 性欧美videosex高清少妇| 日韩中文影院| 久久久视频免费观看| 台湾av在线二三区观看| 777亚洲妇女| 成人美女在线视频| 国产偷人视频免费| 欧美日韩播放| 精品久久蜜桃| 激情不卡一区二区三区视频在线| 欧美成人激情视频| www.com在线观看| 老司机成人在线| 欧美日韩高清在线| 免费在线观看亚洲视频| 亚洲影院天堂中文av色| 国产精品爽爽ⅴa在线观看| 日本暖暖在线视频| 亚洲精品色婷婷福利天堂| 久久久久久久黄色片| 亚洲日本va午夜在线影院| 国产精品扒开腿做爽爽| 精品一二三四区| 亚洲欧美天堂在线| 国产在线不卡一区| 亚洲成人激情小说| 国产精品一区二区久激情瑜伽| 911福利视频| 国产成人精品1024| 无码人妻精品一区二区三区温州| 国产suv精品一区二区三区| 亚洲欧美高清在线| 丰满放荡岳乱妇91ww| 五月天精品在线| 亚洲人吸女人奶水| 国产情侣小视频| 91精品国产高清一区二区三区 | 亚洲伦理影院| 成人动漫在线视频| 美女久久久久| 亚洲成年人专区| 99精品免费网| 日b视频在线观看| 欧美国产欧美综合| 日韩欧美亚洲一区二区三区| 在线视频国产一区| 亚洲色图16p| 久久精品国产2020观看福利| 波多野结衣在线播放| 91午夜在线播放| 日韩欧美天堂| 久久黄色免费看| 99国产精品久久久久久久久久久| 美国黄色小视频| 欧美日韩免费观看一区二区三区| 婷婷国产在线| 国产欧美精品久久久| 狠狠色狠狠色综合婷婷tag| 男女污污的视频| 国产日韩欧美精品在线| 国产三级在线观看视频| 久久中文精品视频| 中文字幕日韩高清在线| 精品少妇一区二区三区在线| 成人av第一页| 中文字幕+乱码+中文乱码91| 日本一区二区三区国色天香| 国产美女精品视频国产| 国产精品视频久久久| 大陆精大陆国产国语精品| 中文字幕一区二区三区5566| 午夜亚洲影视| 人妻无码一区二区三区免费| 一区二区三区久久久| 国产suv精品一区二区69| 久久人人九九| 国产精品美女久久久| a在线视频播放观看免费观看| 亚洲激情中文字幕| 国产69精品久久久久9999人| 欧美精品一区二区三区三州| 国产亚洲欧美一级| 欧美一级视频免费| 91亚洲精品视频| 日韩av一级片| 天堂网av2014| 国产欧美精品一区二区| 国产伦理久久久久久妇女| 成年人黄色片视频| 国产欧美日韩久久| 快射av在线播放一区| 丁香六月激情网| 在线观看免费一区| 丁香婷婷在线| 日本不卡久久| 99视频一区二区三区| 熟妇人妻一区二区三区四区| 亚洲综合最新在线| 久久69国产一区二区蜜臀| 亚洲天堂狠狠干| 国产精品久久久久av蜜臀| 九九热精品在线播放| 天天操天天插天天射| 欧美性视频网站| 99在线精品免费视频九九视 | 国产精品一区二| 午夜在线a亚洲v天堂网2018| 国产精品成人aaaa在线| 欧美日韩福利在线观看| 三上亚洲一区二区| 久久久久久福利| 久久免费国产视频| 国产偷自视频区视频一区二区| 亚洲va在线观看| 91沈先生作品| 欧美成人精品欧美一| 久久久久久久久久久免费| 亚洲乱码久久| 亚洲精品18在线观看| 精品欧美日韩| 亚洲少妇最新在线视频| 牛牛精品一区二区| 日韩无码精品一区二区| 日韩黄色在线免费观看| 欧美成免费一区二区视频| 五月婷婷之婷婷| 中日韩免费视频中文字幕| 香港三日本8a三级少妇三级99| 国产视频久久网| 一本一本久久a久久综合精品| 日韩电影在线观看一区二区| 亚洲自拍偷拍在线| 中文字幕综合网| 欧美高清你懂的| 黄色精品视频在线观看| 国产精品久久久久免费a∨大胸 | 日韩精品视频免费看| 国产精品一区二区久久国产| 国产成人丝袜美腿| 日本在线观看免费| 亚洲va在线va天堂va偷拍| 伊人一区二区三区久久精品| japanese国产在线观看| 五月天国产一区| 9191国产精品| 欧美破处大片在线视频| 欧美5-7sexvideos处| 成人精品视频一区二区| 精品国产一区二区三区在线观看| 久久精品亚洲| 黄色动漫在线观看| 阿v天堂2014| 国产日产精品一区二区三区四区| 国产精品69久久| 久久激情五月丁香伊人| 亚洲一区和二区| 一区二区不卡视频在线观看| 91丨porny丨九色| 亚洲一区二区免费视频软件合集| 欧美日本高清一区| 91精选在线观看| 国产日韩v精品一区二区| 一本色道久久综合亚洲精品高清| 亚洲黑人在线| 国产调教视频在线观看| 国产强伦人妻毛片| 波多野结衣亚洲一区二区| 男女无套免费视频网站动漫| 快播亚洲色图| 亲爱的老师9免费观看全集电视剧| 欧美一区二区三区四区久久| 日韩美女视频一区二区 | 波多野结衣啪啪| 成人午夜福利一区二区| 久久精品午夜福利| 亚洲国产激情一区二区三区| 国产精品一二三在线| 久久视频在线看| 亚洲国产古装精品网站| 色94色欧美sute亚洲13| 欧美激情综合在线| 成人性生交大片| 另类小说一区二区三区| 亚洲大片在线| 亚洲激情中文| 日韩dvd碟片| 奇米色欧美一区二区三区| 成人污污视频| 欧美黄页免费| 国产69精品久久久久9999人| 爱啪视频在线观看视频免费| 黄色片网站在线| 福利在线视频导航| 四虎电影院在线观看| 先锋av资源站| av中文字幕免费| 麻豆一区在线观看| 亚洲精品无码一区二区| 成人不卡免费视频| 天天视频天天爽| 九九热免费精品视频| 三级在线视频观看| 亚洲一区二区三区四区五区| 任你操这里只有精品| 99色精品视频| 日日鲁鲁鲁夜夜爽爽狠狠视频97 | а√在线中文在线新版| 免费a级人成a大片在线观看| 国产精品一区在线看| yjizz视频网站在线播放| 欧洲亚洲在线| 在线看的av网站| 91麻豆免费在线视频| 九色91在线| 午夜欧美巨大性欧美巨大| 高清电影一区| 人人爱人人干婷婷丁香亚洲| 这里视频有精品| 欧美日韩激情在线一区二区三区| 欧美成人激情| 日日骚欧美日韩| 成人av中文字幕| 亚洲欧洲国产日韩| 欧美香蕉大胸在线视频观看| 欧美男人的天堂一二区| 亚洲精品久久视频| 日韩视频免费中文字幕| 亲爱的老师9免费观看全集电视剧| 国产精品日韩欧美大师| 久久综合久久综合这里只有精品| 在线观看国产一区| 国产精品涩涩涩视频网站| 天天躁日日躁狠狠躁av| 欧美在线视频第一页| 真实新婚偷拍xxxxx| 91午夜在线| 99热99re6国产在线播放| 日韩精品亚洲专区在线观看| 欧美aaaa视频| 国产一区二区三区免费看| 亚洲乱码中文字幕| 一区二区三区在线视频免费| 黑人精品xxx一区| 亚洲精品久久久一区二区三区 | 亚洲美女精品一区| 日韩欧美亚洲国产精品字幕久久久| 最近免费中文字幕视频2019| 国产精品久久久久国产a级| 在线观看日韩片| 女人扒开双腿让男人捅| 久青草视频在线观看| 亚洲欧洲综合在线| 亚洲mmav| 亚洲激情另类| 国产精品传媒入口麻豆| 日韩欧美国产精品| 国产精品人成电影在线观看| 中文字幕乱码免费| 日本成人免费视频| 狠狠人妻久久久久久综合麻豆 | 久久91导航| 日韩视频久久| 亚洲高清视频中文字幕| 一区二区三区亚洲| 精品伊人久久大线蕉色首页| 九九热99视频| 伊人亚洲综合网| 三级中文字幕在线观看| 欧美成人一品| 亚洲精品乱码久久久久久黑人| 亚洲精品在线看| 免费日韩av电影| 国产福利短视频| 激情视频免费观看在线| 欧美一级大片在线视频| 国产一区二区三区久久悠悠色av| 一本久道久久综合中文字幕| 91国内揄拍国内精品对白| 久久久性生活视频| 日韩少妇裸体做爰视频| av免费在线观| 国产欧美欧美| 欧美三级电影网| 91视频网页| 国产三级视频网站| 国产三级在线免费观看| 日韩激情在线| 亚洲国产综合91精品麻豆| 57pao成人永久免费视频|